|
System | : | Linux MiraNet 3.0.0-14-generic-pae #23-Ubuntu SMP Mon Nov 21 22:07:10 UTC 2011 i686 |
Software | : | Apache. PHP/5.3.6-13ubuntu3.10 |
ID | : | uid=65534(nobody) gid=65534(nogroup) groups=65534(nogroup)
|
|
Safe Mode | : | OFF |
Open_Basedir | : | OFF |
Freespace | : | 25.52 GB of 70.42 GB (36.24%) |
|
MySQL: ON MSSQL: OFF Oracle: OFF PostgreSQL: OFF Curl: OFF Sockets: ON Fetch: OFF Wget: ON Perl: ON |
Disabled Functions: pcntl_alarm,pcntl_fork,pcntl_waitpid,pcntl_wait,pcntl_wifexited,pcntl_wifstopped,pcntl_wifsignaled,pcntl_wexitstatus,pcntl_wtermsig,pcntl_wstopsig,pcntl_signal,pcntl_signal_dispatch,pcntl_get_last_error,pcntl_strerror,pcntl_sigprocmask,pcntl_sigwaitinfo,pcntl_sigtimedwait,pcntl_exec,pcntl_getpriority,pcntl_setpriority,
|
[ System Info ]
[ Processes ]
[ SQL Manager ]
[ Eval ]
[ Encoder ]
[ Mailer ]
[ Back Connection ]
[ Backdoor Server ]
[ Kernel Exploit Search ]
[ MD5 Decrypter ]
[ Reverse IP ]
[ Kill Shell ]
[ FTP Brute-Force ]
|
|
/
usr/
src/
linux-headers-3.0.0-14-generic-pae/
include/
linux/
- drwxr-xr-x
|
Viewing file: seqlock.h (6.68 KB) -rw-r--r--Select action/file-type:  ( +) |  ( +) |  ( +) | Code ( +) | Session ( +) |  ( +) | SDB ( +) |  ( +) |  ( +) |  ( +) |  ( +) |  ( +) |
#ifndef __LINUX_SEQLOCK_H #define __LINUX_SEQLOCK_H /* * Reader/writer consistent mechanism without starving writers. This type of * lock for data where the reader wants a consistent set of information * and is willing to retry if the information changes. Readers never * block but they may have to retry if a writer is in * progress. Writers do not wait for readers. * * This is not as cache friendly as brlock. Also, this will not work * for data that contains pointers, because any writer could * invalidate a pointer that a reader was following. * * Expected reader usage: * do { * seq = read_seqbegin(&foo); * ... * } while (read_seqretry(&foo, seq)); * * * On non-SMP the spin locks disappear but the writer still needs * to increment the sequence variables because an interrupt routine could * change the state of the data. * * Based on x86_64 vsyscall gettimeofday * by Keith Owens and Andrea Arcangeli */
#include <linux/spinlock.h> #include <linux/preempt.h> #include <asm/processor.h>
typedef struct { unsigned sequence; spinlock_t lock; } seqlock_t;
/* * These macros triggered gcc-3.x compile-time problems. We think these are * OK now. Be cautious. */ #define __SEQLOCK_UNLOCKED(lockname) \ { 0, __SPIN_LOCK_UNLOCKED(lockname) }
#define seqlock_init(x) \ do { \ (x)->sequence = 0; \ spin_lock_init(&(x)->lock); \ } while (0)
#define DEFINE_SEQLOCK(x) \ seqlock_t x = __SEQLOCK_UNLOCKED(x)
/* Lock out other writers and update the count. * Acts like a normal spin_lock/unlock. * Don't need preempt_disable() because that is in the spin_lock already. */ static inline void write_seqlock(seqlock_t *sl) { spin_lock(&sl->lock); ++sl->sequence; smp_wmb(); }
static inline void write_sequnlock(seqlock_t *sl) { smp_wmb(); sl->sequence++; spin_unlock(&sl->lock); }
static inline int write_tryseqlock(seqlock_t *sl) { int ret = spin_trylock(&sl->lock);
if (ret) { ++sl->sequence; smp_wmb(); } return ret; }
/* Start of read calculation -- fetch last complete writer token */ static __always_inline unsigned read_seqbegin(const seqlock_t *sl) { unsigned ret;
repeat: ret = ACCESS_ONCE(sl->sequence); if (unlikely(ret & 1)) { cpu_relax(); goto repeat; } smp_rmb();
return ret; }
/* * Test if reader processed invalid data. * * If sequence value changed then writer changed data while in section. */ static __always_inline int read_seqretry(const seqlock_t *sl, unsigned start) { smp_rmb();
return unlikely(sl->sequence != start); }
/* * Version using sequence counter only. * This can be used when code has its own mutex protecting the * updating starting before the write_seqcountbeqin() and ending * after the write_seqcount_end(). */
typedef struct seqcount { unsigned sequence; } seqcount_t;
#define SEQCNT_ZERO { 0 } #define seqcount_init(x) do { *(x) = (seqcount_t) SEQCNT_ZERO; } while (0)
/** * __read_seqcount_begin - begin a seq-read critical section (without barrier) * @s: pointer to seqcount_t * Returns: count to be passed to read_seqcount_retry * * __read_seqcount_begin is like read_seqcount_begin, but has no smp_rmb() * barrier. Callers should ensure that smp_rmb() or equivalent ordering is * provided before actually loading any of the variables that are to be * protected in this critical section. * * Use carefully, only in critical code, and comment how the barrier is * provided. */ static inline unsigned __read_seqcount_begin(const seqcount_t *s) { unsigned ret;
repeat: ret = s->sequence; if (unlikely(ret & 1)) { cpu_relax(); goto repeat; } return ret; }
/** * read_seqcount_begin - begin a seq-read critical section * @s: pointer to seqcount_t * Returns: count to be passed to read_seqcount_retry * * read_seqcount_begin opens a read critical section of the given seqcount. * Validity of the critical section is tested by checking read_seqcount_retry * function. */ static inline unsigned read_seqcount_begin(const seqcount_t *s) { unsigned ret = __read_seqcount_begin(s); smp_rmb(); return ret; }
/** * __read_seqcount_retry - end a seq-read critical section (without barrier) * @s: pointer to seqcount_t * @start: count, from read_seqcount_begin * Returns: 1 if retry is required, else 0 * * __read_seqcount_retry is like read_seqcount_retry, but has no smp_rmb() * barrier. Callers should ensure that smp_rmb() or equivalent ordering is * provided before actually loading any of the variables that are to be * protected in this critical section. * * Use carefully, only in critical code, and comment how the barrier is * provided. */ static inline int __read_seqcount_retry(const seqcount_t *s, unsigned start) { return unlikely(s->sequence != start); }
/** * read_seqcount_retry - end a seq-read critical section * @s: pointer to seqcount_t * @start: count, from read_seqcount_begin * Returns: 1 if retry is required, else 0 * * read_seqcount_retry closes a read critical section of the given seqcount. * If the critical section was invalid, it must be ignored (and typically * retried). */ static inline int read_seqcount_retry(const seqcount_t *s, unsigned start) { smp_rmb();
return __read_seqcount_retry(s, start); }
/* * Sequence counter only version assumes that callers are using their * own mutexing. */ static inline void write_seqcount_begin(seqcount_t *s) { s->sequence++; smp_wmb(); }
static inline void write_seqcount_end(seqcount_t *s) { smp_wmb(); s->sequence++; }
/** * write_seqcount_barrier - invalidate in-progress read-side seq operations * @s: pointer to seqcount_t * * After write_seqcount_barrier, no read-side seq operations will complete * successfully and see data older than this. */ static inline void write_seqcount_barrier(seqcount_t *s) { smp_wmb(); s->sequence+=2; }
/* * Possible sw/hw IRQ protected versions of the interfaces. */ #define write_seqlock_irqsave(lock, flags) \ do { local_irq_save(flags); write_seqlock(lock); } while (0) #define write_seqlock_irq(lock) \ do { local_irq_disable(); write_seqlock(lock); } while (0) #define write_seqlock_bh(lock) \ do { local_bh_disable(); write_seqlock(lock); } while (0)
#define write_sequnlock_irqrestore(lock, flags) \ do { write_sequnlock(lock); local_irq_restore(flags); } while(0) #define write_sequnlock_irq(lock) \ do { write_sequnlock(lock); local_irq_enable(); } while(0) #define write_sequnlock_bh(lock) \ do { write_sequnlock(lock); local_bh_enable(); } while(0)
#define read_seqbegin_irqsave(lock, flags) \ ({ local_irq_save(flags); read_seqbegin(lock); })
#define read_seqretry_irqrestore(lock, iv, flags) \ ({ \ int ret = read_seqretry(lock, iv); \ local_irq_restore(flags); \ ret; \ })
#endif /* __LINUX_SEQLOCK_H */
|